Improving tree survival prediction with forecast combination and disaggregation
نویسندگان
چکیده
The tree mortality model plays an important role in simulating stand dynamic processes. Past work has shown that the disaggregation method was successful in improving tree survival prediction. This method was used in this study to forecast tree survival probability of Chinese pine (Pinus tabulaeformis Carrière) in Beijing. Outputs from the tree survival model were adjusted from either the stand-level model prediction or the combined estimator from the forecast combination method. Our results show that the disaggregation approach improved the performance of tree survival models. We also showed that stand-level prediction played a crucial role in refining outputs from a tree survival model, especially when it is a very simple model. Because the forecast combination method produced better stand-level prediction, we prefer the use of this method in conjunction with the disaggregation approach, even though the performance gain in using the forecast combination method shown for this data set was modest. Résumé : La modélisation de la mortalité des arbres joue un rôle important dans la simulation des processus dynamiques de la croissance forestière. Les travaux antérieurs ont montré que la méthode de désagrégation pouvait améliorer la prédiction de la survie des arbres. Cette méthode a donc été utilisée ici pour prédire la probabilité de survie du pin de Chine (Pinus tabulaeformis Carrière) à Pékin. Les extrants du modèle de survie des arbres ont été ajustés à partir soit de la prédiction du modèle à l’échelle du peuplement, soit de l’estimateur combiné de la méthode de combinaison des prédictions. Nos résultats montrent que l’approche de désagrégation a amélioré la performance du modèle de survie des arbres. Nous avons également montré que la prédiction à l’échelle du peuplement a joué un rôle crucial dans le raffinement des extrants du modèle de survie des arbres, surtout lorsque le modèle est très simple. Comme la méthode de combinaison des prédictions prédit le mieux les attributs du peuplement, nous préférons l’utiliser conjointement avec la méthode de désagrégation, même si le gain de performance était modeste pour l’ensemble de données considéré. [Traduit par la Rédaction]
منابع مشابه
The Variance-covariance Method using IOWGA Operator for Tourism Forecast Combination
Three combination methods commonly used in tourism forecasting are the simple average method, the variance-covariance method and the discounted MSFE method. These methods assign the different weights that can not change at each time point to each individual forecasting model. In this study, we introduce the IOWGA operator combination method which can overcome the defect of previous three combin...
متن کاملPrediction of monthly rainfall using artificial neural network mixture approach, Case Study: Torbat-e Heydariyeh
Rainfall is one of the most important elements of water cycle used in evaluating climate conditions of each region. Long-term forecast of rainfall for arid and semi-arid regions is very important for managing and planning of water resources. To forecast appropriately, accurate data regarding humidity, temperature, pressure, wind speed etc. is required.This article is analytical and its database...
متن کاملApplication of soil properties, auxiliary parameters, and their combination for prediction of soil classes using decision tree model
Soil classification systems are very useful for a simple and fast summarization of soil properties. These systems indicate the method for data summarization and facilitate connections among researchers, engineers, and other users. One of the practical systems for soil classification is Soil Taxonomy (ST). As determining soil classes for an entire area is expensive, time-consuming, and almost ...
متن کاملForecasting Stock Trend by Data Mining Algorithm
Stock trend forecasting is a one of the main factors in choosing the best investment, hence prediction and comparison of different firms’ stock trend is one method for improving investment process. Stockholders need information for forecasting firm’s stock trend in order to make decision about firms’ stock trading. In this study stock trend, forecasting performs by data mining algorithm. It sho...
متن کاملارایه مدلی جهت پیشبینی بقای بیماران دیالیز صفاقی با استفاده از الگوریتمهای دادهکاوی
Background: Peritoneal dialysis is one of the most commonly used treatment methods for the patients with end stage renal failure. In recent years, the mortality rate of patients under this treatment has decreased; however, long-term survival is still an important challenge for health systems. The present study aimed to predict the survival of continuous ambulatory peritoneal dialysis patients. ...
متن کامل